Thermal Energy Storage (TES) systems are central elements of various types of power plants operated using renewable energy sources. Packed bed TES can be considered as a cost–effective solution in concentrated solar power plants (CSP). Such a device is made up of a tank filled with a granular bed through which heat-transfer fluid circulates. However, in such devices, the thermal stresses may accumulate from cycle to another due to differential thermal dilatation between filler and tank walls, leading to plastic deformations in the tank shell and the failure of the tank might happen. This paper aims at studying the evolution of tank wall stresses over granular bed thermal cycles, taking into account both thermal and mechanical loads, with a numerical model based on the discrete element method (DEM). Simulations were performed to study two different thermal configurations: (i) the tank is heated homogenously along its height or (ii) with a vertical gradient of temperature. Then, the resulting loading stresses applied on the tank are compared as well the response of the internal granular material.

Keywords: Renewable energy, Discrete element method, Concentrated solar power, Power plants, Thermal effects, Oceanography, Granular materials, Numerical methods, Thermodynamic states and processes

Access Full Text