Discrete element modelling (DEM) is one of the most efficient computational approaches to the fracture processes of heterogeneous materials on mesoscopic scales. From the dynamics of single crack propagation through the statistics of crack ensembles to the rapid fragmentation of materials DEM had a substantial contribution to our understanding over the past decades. Recently, the combination of DEM with other simulation techniques like Finite Element Modelling further extended the field of applicability. In this paper we briefly review the motivations and basic idea behind the DEM approach to cohesive particulate matter and then we give an overview of on-going developments and applications of the method focusing on two fields where recent success has been achieved. We discuss current challenges of this rapidly evolving field and outline possible future perspectives and debates.

Keywords: European Physical Journal Special Topic, Heterogeneous Material, Burst Size, Hard Wall, Discrete Element Modelling 

Access Full Text