Effect of hydraulic fracture closure on the void ratio of proppant particles in coalbed methane reservoir

Author(s)
D. Han, G. Feng, S. Guan, S. Hu, Y. Chen
Publisher
Elsevier
Source
Journal of Natural Gas Science and Engineering
Keywords
Coalbed methane, Hydraulic fracture, proppant particle, void ratio
Year
2020

Fracture closures have direct effects on the void ratio distributions of proppant particles filled in hydraulic fractures and then influence the fluid pathways of coalbed methane (CBM) within those fractures. In this paper, a numerical simulation method was used to investigate the void ratio distributions of proppant-filled fracture under different compression amounts of 0%, 5%, 10%, 15% and 20%. The results showed that the void ratio distributions had exhibited an inverted ā€œUā€ shape, with a trend of decreasing first, followed by remaining constant, and then increasing from the bottom to the top of the fracture, which could be divided into three zones: bottom loose zone (BLZ), middle compaction zone (MCZ) and top loose zone (TLZ). At the same compression, the small coordination numbers in the BLZ and TLZ had accounted for a larger proportion, and the average coordination numbers and void ratios in the two zones were 0.8-0.9 and 1.3 times than those in the MCZ, respectively. In addition, the proportion of the large coordination numbers in the different layers had increased, and the layered average coordination numbers had increased linearly, which had resulted in the layered void ratios decreasing linearly with the increases in the compression amounts.

Keywords: coalbed methane, hydraulic fracture, proppant particle, void ratio

Access Full Text